В формулах (1)и (2) α — упругая характеристика кладки, принимается по п. 3.21.
Модуль упругости кладки с сетчатым армированием принимается таким же, как для неармированной кладки.
Для кладки с продольным армированием упругую характеристику следует принимать такой же, как для неармированной кладки; Ru — временное сопротивление (средний предел прочности) сжатию кладки, определяемое по формуле
где k — коэффициент, принимаемый по табл. 14:
R — расчетные сопротивления сжатию кладки, принимаемые по табл. 2 — 9 с учетом коэффициентов, приведенных в примечаниях к этим таблицам, а также в пп. 3.9 — 3.14.
Вид кладки | Коэффициент k |
1. Из кирпича и камней всех видов, из крупных блоков, рваного бута и бутобетона, кирпичная вибриро-ванная | 2,0 |
2. Из крупных и мелких блоков из ячеистых бетонов | 2,25 |
Закон Гука Модуль Юнга Механика Урок 18
Упругую характеристику кладки с сетчатым армированием следует определять по формуле
(4)
В формулах (2) и (4) Rsku — временное сопротивление (средний предел прочности) сжатию армированной кладки из кирпича или камней при высоте ряда не более 150 мм, определяемое по формулам:
для кладки с продольной арматурой
для кладки с сетчатой арматурой
μ — процент армирования кладки;
для кладки с продольной арматурой
где Аs и Аk — соответственно площади сечения арматуры и кладки, для кладки с сетчатой арматурой μ определяется по п. 4.30;
Rsn — нормативные сопротивления арматуры в армированной кладке, принимаемые для сталей классов А-I и А-II в соответствии с главой СНиП по проектированию бетонных и железобетонных конструкций, а для стали класса Вр-I — с коэффициентом условий работы 0,6 по той же главе СНиП.
3.21. Значения упругой характеристики α для неармированной кладки следует принимать по табл. 15.
2. Приведенные в табл. 15 (пп. 7 — 9) значения упругой характеристики а для кирпичной кладки распространяются на виброкирпичные панели и блоки.
3. Упругая характеристика бутобетона принимается равной α = 2000.
4. Для кладки на легких растворах значения упругой характеристики α следует принимать по табл. 15 с коэффициентом 0,7.
3.22. Модуль деформаций кладки Е должен приниматься:
а) при расчете конструкций по прочности кладки для определения усилий в кладке, рассматриваемой в предельном состоянии сжатия при условии, что деформации кладки определяются совместной работой с элементами конструкций из других материалов (для определения усилий в затяжках сводов, в слоях сжатых многослойных сечений, усилий, вызываемых температурными деформациями, при расчете кладки над рандбалками или под распределительными поясами) по формуле
где, e0 — модуль упругости (начальный модуль деформаций) кладки, определяемый по формулам (1) и (2).
б) при определении деформаций кладки от продольных или поперечных сил, усилий в статически неопределимых рамных системах, в которых элементы конструкций из кладки работают совместно с элементами из других материалов, периода колебаний каменных конструкций, жесткости конструкций по формуле
3.23. Относительная деформация кладки с учетом ползучести определяется по формуле
где σ — напряжение, при котором определяется ε;
ν — коэффициент, учитывающий влияние ползучести кладки;
v = 1,8 ‑ для кладки из керамических камней с вертикальными щелевидными пустотами (высота камня 138 мм);
v = 2,2 ‑ для кладки из глиняного кирпича пластического и полусухого прессования.
v = 2,8 — для кладки из крупных блоков или камней, изготовленных из тяжелого бетона;
v = 3,0 — для кладки из силикатного кирпича и камней полнотелых и пустотелых, а также из камней, изготовленных из бетона на пористых заполнителях или поризованного и силикатных крупных блоков:
v = 3,5 — для кладки из мелких и крупных блоков, изготовленных из автоклавного ячеистого бетона вида А;
v = 4,0 — то же, из автоклавного ячеистого бетона вида Б.
3.24. Модуль упругости кладки Е0 при постоянной и длительной нагрузке с учетом ползучести следует уменьшать путем деления его на коэффициент ползучести v.
3.25. Модуль упругости и деформаций кладки из природных камней допускается принимать по специальным указаниям, составленным на основе результатов экспериментальных исследований и утвержденным госстроями союзных республик в установленном порядке.
3.26. Деформации усадки кладки из глиняного кирпича и керамических камней не учитываются.
Деформации усадки следует принимать для кладок:
из кирпича, камней, мелких и крупных блоков, изготовленных на силикатном или цементном вяжущем, — 3•10-4;
из камней и блоков, изготовленных из автоклавного ячеистого бетона (вида А), — 4•10-4;
то же, из неавтоклавного ячеистого бетона (вида Б) — 8•10-4;
3.27. Модуль сдвига кладки следует принимать равным G = 0,4 Е0, где Е0 — модуль упругости при сжатии.
3.28. Величины коэффициентов линейного расширения кладки следует принимать по табл. 16.
Материал кладки | Коэффициент линейного расширения кладки t град. — 1 |
1. Кирпич глиняный полнотелый, пустотелый и керамические камни | 0,000005 |
2. Кирпич силикатный, камни и блоки бетонные и бутобетон | 0,00001 |
3. Природные камни, камни и блоки из ячеистых бетонов | 0,000008 |
Примечание. Величины коэффициентов линейного расширения для кладки из других материалов допускается принимать по опытным данным. |
3.29. Коэффициент трения следует принимать по табл. 17.
- Архитектура
- Благоустройство
- Вентиляция
- Вопросы-ответы
- Единая технология
- ЕНиР
- Журналы
- Инженерные системы
- Недвижимость
- Новое в строительстве
- Новости
- Опер.контроль СМР
- Проекты
- Ремонт в хрущевке
- Сметы
- СНИПы, ГОСТы
- Стройматериалы
- Строительные бригады
- Техника безопасности
- Техника и оборудование
- Фотографии
Источник: snip1.ru
Модуль упругости бетона: что это такое и как его правильно определить
Общие понятия
Технологии строительства любых объектов требуют предварительных расчетов. Несущая способность грунтов, качество стройматериалов – ключевые характеристики в строительстве. Чтобы правильно подобрать нужную марку бетона, необходимо знать все его технические характеристики, одна из них – модуль упругости бетона. Например, модуль упругости бетона В25, позволяет использовать его в любых сферах строительства.
Что такое модуль упругости бетона
Модуль упругости бетона – показатель уровня упругой деформации материала под воздействием давления, силы и некоторых других внешних факторов. Существует специальная формула, по которой специалисты рассчитывают величину соотношения напряжения и модуля деформации бетона.
Понятие модуля упругости и единицы измерения
Понятие модуля упругости сводится к тому, что этот показатель демонстрирует начальную величину усилия, под воздействием которого в материале начинаются деформационные процессы, описываемые законом Гука. Этот закон звучит так: «абсолютное сжатие или растяжение равны приложенной силе умноженной на модуль упругости».
Показатель определяют под воздействием усилия, поэтому для модуля упругости выбрали одну из единиц давления – паскаль (Па). Как измеритель, паскаль единица мелкая, его применение неудобно, поэтому, в технической литературе чаще присутствует мегапаскаль (МПа).
Существуют определенные компьютерные программы (ЛИР, СКАД) для расчета железобетонных конструкций. В ЛИРе и СКАДе используется другая единица измерения модуля упругости – «тонна-сила, делённая на квадратный метр» (тсм²). При необходимости, одну единицу измерения несложно перевести в другую.
Какие факторы определяют модуль упругости бетона В25 и бетонов других классов
В связи с тем, что модуль упругости бетона В25, как и всех других марок, получают опытным путём, то существует несколько факторов, которые его определяют. Модуль упругости, по-другому, называют модулем Юнга. На модуль Юнга, прямо влияет целый ряд факторов.
Заполнители
Модуль Юнга прямо пропорционально зависит от типа заполнителя и его плотности. Низкая плотность одного из основных составляющих бетона, делает модуль Юнга малым. Модуль прочности будет выше во много раз, если применить заполнитель большой плотности.
Класс бетона
На модуль упругости, класс бетона влияет напрямую – чем ниже класс бетона, тем ниже значения модуля при сжатии или растяжении. Есть таблица значений.
Марка бетона | Значение модуля упругости бетона при сжатии, МПа. |
В10 | 19000 |
В15 | 21500 |
В20 | 24000 |
В25 | 30000 |
В30 | 32500 |
В35 | 34500 |
Температура и радиация
Высокая температура окружающего воздуха, или других материалов, в которые погружен бетон, увеличивает линейное расширение бетона. Оно, в свою очередь, приводит к увеличению пластичности, соответственно, к снижению модуля упругости.
Солнечная радиация вызывает в бетоне изменения, аналогичные температурным воздействиям. Под воздействием радиации, в бетоне начинают возникать процессы, связанные разрушением межмолекулярных связей. Поэтому, на заводах ЖБК и ЖБИ, применяют «железнение» поверхности бетона, как способ защиты от вредного воздействия солнечной радиации.
Интересно! Температуру воздуха, в значениях 20˚С и ниже, при расчетах модуля упругости не учитывают.
Влажность
Расположенный в земле, бетон постоянно находится в сырости и это нужно учитывать при проектировании фундамента, и составлении запроса на класс бетона, которым будет заливаться монолит.
Время приложения нагрузки
Продолжительность нахождения бетона под нагрузкой – чем дольше воздействует нагрузка, тем ниже модуль упругости. Во всех справочниках указывается начальный модуль деформации бетона, в дальнейшем показатели меняются. При расчетах с учетом длительности воздействия, необходимо учитывать тип заполнителя бетона. Чем меньше плотность заполнителя, тем меньше поправочный коэффициент.
- Ячеистый пористый бетон – коэффициент 0,7.
- Бетон с песком – 0,8.
- Тяжелые бетоны – 0,85.
Поправочный коэффициент применяют для всех типов бетона.
Условия набора прочности
Технологические приёмы, используемые при изготовлении бетона, тоже влияют на его модуль упругости. Применение автоклавной сушки, или сушки повышенной температурой, немного снижает значения прочности.
Возраст бетона
Здесь нужно отметить, что бетон набирает свою полную прочность в течение всего срока эксплуатации. В строительстве, все расчеты ведутся на проектную прочность, поэтому, с увеличением срока эксплуатации, в небольших пропорциях растет и модуль упругости.
Армирование конструкций
Наличие пространственной арматурной решетки повышает способность бетонной конструкции противостоять деформирующим факторам, и увеличивает возможность воспринимать прилагаемые нагрузки.
Немаловажным фактором является то, что арматура периодического профиля, имеющая больший коэффициент сцепления, лучше подходит для увеличения модуля упругости, чем гладкого профиля.
Важно! Значение нормативного сопротивления нагрузке, для арматуры класса А6 выше, чем то же, для класса А1.
Модуль упругости бетона – таблица
Чтобы ускорить процесс подбора материала, все данные о модулях упругости, полученные лабораторным путем, сведены в таблицу.
Способы определения модуля
Модуль упругости бетона определяют по результатам эксперимента с образцом бетона. Бетонную болванку в виде цилиндра определённых размеров, помещают под гидравлический пресс и включают нагрузку. В то же время, по подключённым к прессу приборам, и по внешнему виду болванки определяют модуль упругости.
Другой способ позволяет измерить плотность бетона, а через него определить модуль упругости с помощью специального переносного прибора.
- Устройство, называемое «молоток для контроля прочности бетона», прикладывается к бетону.
- Работая, как электрический отбойный молоток, прибор, через специальный наконечник, наносит легкие удары по тому месту, к которому его приложили.
- Через определённое время на экране прибора появляется значение тех характеристик бетона, которые заложены в программу устройства.
Программное обеспечение молотка позволяет хранить в памяти до 25-ти измерений.
Как определяется модуль упругости бетона В15, В25, В35
Модули упругости бетонов В15, В25, В35 определяются так же, как и для других марок. Однако, существует способ повышения модуля упругости для этих марок.
Минимальные значения модуля упругости у них будут, если провести их сушку в автоклавных устройствах. Применением сушки паром высокой температуры при атмосферном давлении, добиваются повышения модуля упругости на 20-25%.
Важно! Ещё большее значение этой величины можно получить, если применить естественную сушку бетона.
Рекомендации по определению модуля упругости
Существует ряд рекомендаций для вычисления модуля упругости.
- Бетонные смеси должны соответствовать требованиям ГОСТ 7473.
- Значения регламентируемых данных отпускной и передаточной прочности бетона сборных ЖБИ, устанавливают в технических условиях на эти изделия.
- Минимальный класс бетона по прочности на сжатие для армированных изделий принимают по ГОСТ 13015.
- Бетонные смеси для бетонов высокой морозостойкости следует следуют изготавливать с добавлением газообразующих добавок в размере не менее 4%.
Эти и другие рекомендации, которые закладывают в технические условия, помогают сделать ЖБИ с максимально возможным модулем упругости.
Другой рекомендацией при расчете модуля упругости бетона считается учёт коэффициента Пуассона – коэффициента поперечной деформации. Для бетона его принимают равным 0,2.
Подводя итог, можно сделать вывод о том, что модуль упругости является ключевым показателем при расчетах в строительстве. Однако, эта характеристика будет интересна скорее проектировщикам, чем непосредственно строителям. Для определения модуля упругости применяют как старинные, давно зарекомендовавшие себя с хорошей стороны, лабораторные методы, так и новые, более современные экспресс-способы.
Источник: pobetonu.com